OpenFOAM capabilities for MHD simulation under nuclear fusion technology conditions

E. Mas de les Valls & L. Batet

Universitat Politècnica de Catalunya. Barcelona, Spain

OpenFOAM workshop, Milan, 10-11 July, 2008

E. Mas de les Valls, L. Batet (UPC)

MHD capabilities for NFT

Outline

Introduction

- 2 MHD code
- 3 Comparisons
- 4 Conclusions

Nuclear Fusion Technology

ITER: International Thermonuclear Experimental Reactor Demonstrate the scientific and technical feasibility of fusion power by 2016

 $\frac{\text{Main reaction:}}{{}^{2}_{1}H + {}^{3}_{1}H \longrightarrow {}^{4}_{2}He + {}^{1}_{0}n_{(high e)}}$ at plasma's state (millions of °C)

Tokamak design: torus-shaped fusion plasma confined by external magnetic field

Critical aspects

- very high plasma's temperatures (thousands of degrees) → structural materials
 - \longrightarrow heat extraction system
- Plasma's confinement with powerful magnets under cryogenic conditions — very high temperature gradient (materials?)
- 3 tritium as the main fuel. No natural tritium source.
 - \longrightarrow tritium generation
- radioactivity control (mainly for tritium)

A key component: the Breeding Unit

Test Blanket Module

HCLL design for ITER

Pb as neutron multiplier ${}_{3}^{6}Li + {}_{0}^{1}n_{(low \ e)} \rightarrow {}_{1}^{3}H + {}_{2}^{4}He$

- 3 main TBM functions:
 - Self-supplying of tritium
 - Heat power removing
 - Shielding against n and γ irradiation
 - \longrightarrow need of detailed flow profiles
- Flow properties (HCLL):

•
$$Ha = B L \sqrt{\left(\frac{\sigma_m}{\rho_{\nu}}\right)} > 10^4$$

• $N = \frac{Ha^2}{Be} \sim 10^3 - 10^5$

• Liquid metal (Pb-15.7Li)

•
$$Rm = \sigma_m \mu_m v L \ll 1$$

Research areas

Development of a MHD code

- Low Rm numbers or full equations?
- Beduction of CPU time: Wall functions

Coupling between MHD and heat transfer

- Does Boussinesq hypothesis apply?
- Dealing with very high source terms
- High Ha effect on Rayleigh-Bénard instabilities
- Tritium behavior in TBM
 - Treatment as a passive scalar: a post-process
 - Helium influence on tritium transport
 - Dealing with He bubbles

Outline

Introduction

- 3 Comparisons
- 4 Conclusions

Physical background: governing equations

Assumed hypothesis:

- Incompressible fluid
- Constant fluid properties (ρ , μ , σ , μ _m)
- No body forces except Lorentz force (L)
- Grossly neutral fluid: $L = \rho_e \vec{E} + \vec{j} \times \vec{B} \rightarrow \vec{j} \times \vec{B}$

Governing equations

Navier-Stokes equations

$$\nabla \cdot \vec{\mathbf{v}} = \mathbf{0} \frac{\partial \vec{\mathbf{v}}}{\partial t} + (\vec{\mathbf{v}} \cdot \nabla) \vec{\mathbf{v}} = -\frac{1}{\rho} \nabla \mathbf{p} + \nabla \cdot (\nu \nabla \vec{\mathbf{v}}) + \frac{1}{\rho} \left(\vec{j} \times \vec{\mathbf{B}} \right)$$

Maxwell equations

Solenoidal nature of B: $\nabla \cdot \vec{B} = 0$ Faraday's law of induction: $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ Ampere's law: $\nabla \times \vec{B} = \mu_m \vec{j}$ Charge conservation: $\nabla \cdot \vec{j} = 0$ Ohm's law: $\vec{j} = \sigma_m (\vec{E} + \vec{v} \times \vec{B})$

Final set of equations

Bi-directional coupling

 $\nabla \cdot \vec{v} = 0$

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v} = -\frac{1}{\rho}\nabla p + \nabla \cdot (\nu\nabla \vec{v}) - \frac{1}{2\rho\mu_m}\nabla \vec{B}^2 + \left(\frac{\vec{B}}{\rho\mu_m} \cdot \nabla\right)\vec{B}$$
$$\frac{\partial \vec{B}}{\partial t} + (\vec{v} \cdot \nabla)\vec{B} = (\vec{B} \cdot \nabla)\vec{v} + \nabla \cdot \left(\frac{1}{\sigma_m\mu_m}\nabla \vec{B}\right)$$
$$\nabla \cdot \vec{B} = 0$$

E. Mas de les Valls, L. Batet (UPC)

Applied at liquid metals...

Hypothesis: Low magnetic Reynolds Number (Rm < 1): $\vec{B} = \vec{Bo} + \vec{b} \sim \vec{Bo}$

Uni-directional coupling

 $\nabla \cdot \vec{v} = 0$

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v} = -\frac{1}{\rho}\nabla \rho + \nabla \cdot (\nu \nabla \vec{v}) + \frac{1}{\rho}\vec{j} \times \vec{Bo}$$

From the divergence of Ohm's law: $\nabla^2 \psi = \nabla \cdot (\vec{v} \times \vec{Bo})$

$$\overrightarrow{j} = \sigma_m \left(-\nabla \psi + \overrightarrow{v} \times \overrightarrow{Bo} \right)$$

Algorithms

BPISO algorithm

Full coupling between velocity and magnetic field ($b \neq 0$)

 $\nabla \cdot \vec{B} = 0$ \longrightarrow Projection Method from Brackbill & Barnes (1980).

$$\vec{B}^* = \nabla \times A + \nabla \psi$$
$$\implies \nabla \cdot \vec{B}^* = \nabla^2 \psi$$
$$\vec{B} = \vec{B}^* - \nabla \psi$$

Conservative constraints

 $\nabla^2 \psi = \nabla \cdot (\nabla \psi)$ with:

the divergence scheme must be the same as the one used for $\nabla \cdot \vec{B}^*$ in the potential equation

2) the gradient scheme must be the same as the one used for the \overrightarrow{B} correction

FSPM algorithm

Low magnetic Reynolds hypothesis (b ~ 0)

FSPM: Four Step Projection Method, from Ni et. al (2007)

A current density conservative scheme (in is the current density at the cell faces)

$$L = \frac{1}{\rho} \overrightarrow{j} \times \overrightarrow{Bo}$$
$$\nabla^2 \psi = \nabla \cdot (\overrightarrow{v_f} \times \overrightarrow{Bo_f})$$
$$\overrightarrow{jn} = \sigma_{m,f} (-\nabla_f \psi + \overrightarrow{v_f} \times \overrightarrow{Bo_f})$$

Conservative Constraints

 $\nabla^2 \psi = \nabla \cdot (\nabla \psi)$ with:

(1) $\nabla \psi$ must be consistent in both Poisson equation and the *jn* evaluation

2 $\vec{v_f} \times \overrightarrow{Bo_f}$ must be consistent in both Poisson equation and the *jn* evaluation

Implementation

- $\begin{array}{l} \text{momentum equation} \\ \left\{ \partial U/\partial t + \nabla \cdot (\phi, U) = \nabla^2(\nu, U) \nabla(B^2/(2\rho\mu_m)) \right. \\ \left. + \nabla \cdot (\phi_B/(\rho\mu_m), B) \right\} (\nabla p)/\rho \end{array}$
- 2 PISO loop
 - **1** Jacobi pre-conditioner for ϕ $U = H^u/D^u$
 - 2 Poisson equation for p $\nabla^2(1/(D^u \rho), p) = \nabla \cdot \phi$
 - 3 Correction $U = (\nabla p)/(D^u \rho)$
- ISO loop
 - **1** magnetic field equation $\partial B/\partial t + \nabla \cdot (\phi, B) =$ $\nabla \cdot (\phi_B, U) + \nabla^2 (1/(\sigma_m \mu_m), B)$
 - 2 ϕ_B evaluation $\phi_B = B_f \cdot S_f$
 - **3** Poisson equation for ψ $\nabla^2(1/D^B, \psi) = \nabla \cdot \phi_B$

- FSPM loop
 - **()** momentum equation (Crank-Nicholson) $\{\partial U/\partial t + (\nabla \cdot (\phi, U) - \nabla^2(\nu, U)) - (j \times Bo)/\rho = 0\}$
 - 2 ϕ evaluation $\phi = U_f \cdot S_f$
 - 3 Poisson equation for p $\nabla^2(1/(D^u \rho), p) = \nabla \cdot \phi$
 - (d) Correction $U = (\nabla p)/(D^u \rho)$
 - **5** χ evaluation $\chi = (\sigma_{m,f}(U_f \times B_f)) \cdot S_f$
 - **6** Poisson equation for ψ $\nabla^2(\sigma_m, \psi) = \nabla \cdot \chi$
 - *jn* evaluation $jn = -(\sigma_{m,f}(\nabla_f \psi \cdot S_f)) + \chi$
 - j reconstruction

Stability and accuracy

Monotone scheme:

Constraint: all matrix components must be positive Result: $\frac{|u|\Delta t}{\Delta x} + \frac{2\sigma_m}{\rho} \frac{B^2\Delta t}{\rho} \le \frac{2\sigma_m}{\rho} \frac{B^2\Delta t}{\rho} + \frac{\nu\Delta t}{(\Delta x)^2} \le 1$ Implemented: $\frac{|u|\Delta t}{\Delta x} + \frac{2\sigma_m}{\rho} \frac{B^2\Delta t}{\rho} + \frac{\nu\Delta t}{(\Delta x)^2} \le 1$

Von Neumann analysis:

 $U^{n+1} = A U^n$ Constraint: amplitude factor smaller than 1 for stability ($A \le 1$) Result: $L = \sigma_m B^2 \Delta t / \rho \le 2$ Best accuracy for $L \rightarrow 2$ or $L \rightarrow 0$ At L = 2 no phase error exists

Outline

Introduction

2 MHD code

3 Comparisons

4 Conclusions

E. Mas de les Valls, L. Batet (UPC)

Studied cases

Studied steady state cases with analytical solution:

- Square channel with non conducting walls, 2D. Shercliff (1953)
- Square channel with non conducting side walls and perfectly conducting Hartmann walls, 2D. Hunt (1965)

Boundary conditionsNon conducting walls:
 $\rightarrow B = Bo, \ b = 0$ or $j = 0, \ \partial \psi / \partial n = 0$ Perfectly conducting walls:
 $\rightarrow \ \partial B / \partial n = 0$ or $\partial j / \partial n = 0, \ \psi = 0$

Flow profiles

Example: Re=Ha=100

- Shercliff's case 1953: all walls perfectly insulating
- Hunt's case 1965: conducting Ha walls

Set up

Time discretization:

- BPISO: backward Euler
- FSPM: backward Euler / Crank-Nicholson

Spatial discretization: Central Difference

$$\Delta t$$
 criterion: $\frac{|u|\Delta t}{\Delta x} + \frac{2\sigma_m B^2 \Delta t}{\rho} + \frac{\nu \Delta t}{(\Delta x)^2} \leq 1$

Steady state criterion:
$$\epsilon_u^n = \left| \frac{\max(U^n - U^{n-1})}{\lambda - 1} \right|$$
 where $\lambda = \frac{\max(U^n - U^{n-1})}{\max(U^{n-1} - U^{n-2})}$

Solvers: (Bi-)Conjugate Gradient with incomplete-Cholesky pre-conditioner

Shercliff's case

Adimensional numbers: $Ha = 10^2$, Re = 10, $N = 10^3$, a = b = 1Imposed mass flow (periodic boundary conditions in *x* direction) Electrically insulated walls

mesh	type	nodes	Ha nodes	side nodes
0	uniform	20 imes 20	0.1	1
1	uniform	40×40	0.2	2
2	uniform	80×80	0.4	4
3	uniform	160×160	0.8	8
A	wall conc.	184 imes 140	4	15

E. Mas de les Valls, L. Batet (UPC)

Shercliff's case: mesh errors

Algorithm	mesh	$max(\epsilon_y)\%$	$max(\epsilon_z)\%$	mean error %
FSPM	0	82.19	61.06	13.10
FSPM	1	67.12	45.39	8.21
FSPM	2	42.50	25.98	4.04
FSPM	3	11.06	9.50	1.45
FSPM	Α	0.60	1.05	0.11
BPISO	0	78.96	49.39	91.53
BPISO	1	57.42	22.13	16.84
BPISO	2	30.59	8.19	2.91
BPISO	3	2.71	1.61	0.77
BPISO	А	1.11	0.63	0.15

Origin of the main errors:

BPISO: behaves like a high order scheme, needs numerical diffusion

FSPM: in Ha boundary layers the diffusion term is not balanced by Lorentz forces unless the mesh is fine enough

22 / 27

Hunt's case

Adimensional numbers: $Ha = 10^3$, Re = 10, $N = 10^5$, a = b = 1Imposed mass flow (periodic boundary conditions in *x* direction) Electrically insulated side walls

mesh	type	nodes	Ha nodes	side nodes
2	uniform	80 × 80	0.08	2.5
3	uniform	160×160	0.16	5.1
А	wall conc.	240 imes 336	4	7.9

E. Mas de les Valls, L. Batet (UPC)

Hunt's case: mesh errors

Algorithm	mesh	$max(\epsilon_y)\%$	$max(\epsilon_z)\%$	mean error %
FSPM	2	65.98	60.27	17.26
FSPM	3	24.17	11.28	5.21
FSPM	А	2.20	11.43	1.70
BPISO	2	73.06	280.78	30.08
BPISO	3	33.18	56.94	7.67
BPISO	A	-	-	-

E. Mas de les Valls, L. Batet (UPC)

Outline

Introduction

- 2 MHD code
- 3 Comparisons
- 4 Conclusions

Conclusions

Main observations:

- BPISO behaves as a high order scheme, hence, presents oscillations near a discontinuity
- BPISO finds the steady state faster. Less CPU time for a coarse mesh
- BPISO presents more convergence problems at fine meshes. More CPU time for fine enough meshes
- FSPM is faster for each iteration

For an accurate result, we have chosen

the FSPM as the reference algorithm

Thank you very much