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Abstract

e A Grad-Shafranov equilibrium solver 1s developed
within the NIMROD framework to create plasma
profiles for realistic geometry. The traditional Grad-
Shafranov operator i1s converted to a pure divergence
allowing the use of standard regularity conditions for
the quantity y/R? in simply connected domains. The
resulting equation 1s solved in the weak form using a
finite element representation. A Picard scheme 1s
used to advance the nonlinear iteration.
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INTRODUCTION: The NIMROD code is a computational
laboratory designed to study 3D plasmas for fusion based
applications [Phys. Plasmas 10 (2003) 1727].

 NIMROD uses a spectral element expansion in 2 dimensions
and finite Fourier series in the third.

— Spectral element expansion provides NIMROD with the flexibility to
study plasma in complex geometries.

« High-order accuracy resolves extreme anisotropy.
— Fourier expansion in third dimension requires a degree of symmetry.
» Linear periodic or toroidal geometry

« Nimrod uses an implicit leap frog time advance [JoP: Conf.
Ser. 16, 25 (2005)].

— Allows timesteps that are large relative to normal-mode propagation
times.



NIMROD computations use Grad-Shafranov equilibria in
many applications.

« The capability to create simple 1D equilibria exists within
NIMROD’s preprocessor .

« For more complex geometries, an equilibrium is created from
an external source and then interpolated to a NIMROD mesh.
— The process of interpolation introduces numerical errors into the
equilibrium.
— Software designed to reconstruct equilibria from experimental
measurements may sacrifice accuracy for speed.
— The propagation of these errors though the simulation increases as the
disparity of spatial and temporal scales in the physics increase.
« NIMROD simulations use equilibria as 1nitial states or as fixed
data, where the code just evolves perturbations.



Simulations used to study linear instabilities in SSPX
discharges 1llustrate the practicality of a native equilibrium
solver.
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Cylindrical pinch
— SSPX profiles have been approximated with linear cylindrical pinches.
— Analytic solutions can be used to generate equilibrium.
— Simplifications result in loss of geometric effects.
Realistic mesh representing entire flux conserver
— Geometric effects from gun and wall are included.
— Initial conditions can be read from reconstructed equilibria.
— A native solve can be used to scan profiles in this realistic geometry.



Creating an equilibrium solver within NIMROD allows the
full use of spectral element flexibility and accuracy.

e Using the same expansion to create equilibria and run MHD
simulations eliminates all interpolation errors.

— Best possible equilibrium for a particular grid.

 NIMROD users will be able to modify the solver to meet
demands of specific applications.
— Magnetosphere plasma profiles
— Parameterized tokamaks, RFPs, and spheromaks
— Refine equilibria from other codes

e Modularity of NIMROD provides most of the computational
tools needed for the equilibrium solver.



Outline of solver: The Grad-Shafranov equation describes 2
dimensional axisymmetric plasma equilibria with no flow.

Ny ==F(y)F'(y)-uRp'(v)
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« Nonlinear, elliptic, partial differential equation for the flux
function y(R,z)
— Fand p are independent functions of y and need to be specified.
— I'=RB, p=pressure

* In a linear geometry (p=>z), the del star operator reduces to
the Laplacian in (x,y).

Viy =-Fy)F'(y)-ur'v)



The Grad-Shafranov operator can be expressed as a total

divergence.
A= R*V (R *y) = =Ry
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Expanding y shows that = is well behaved near R=0 as long as
W, =0.
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We choose y,=0 for the arbitrary constant so that = satisfies
standard regularity conditions.
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A finite element algebraic equation 1s formulated for the
dependent variable Z.

V-(R°VE)=G(E,R), G(E,R)=—u,FF - ,p'R’

j (V - (R2VE))0¢Z. (R,2)dV = J' Ga,dV Weak form of Grad-
Shafranov equation

= ZE (R, 2) Expand dependent variable with
finite element basis functions
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No contribution for Dirchlet
Z M;:j g boundary conditions on =
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A surface integral 1s performed to calculate y along the
boundary.

The change 1n the flux function along the boundary 1s given
by

x2
Aw:—jR(E-ﬁ)dl
x1

Normal magnetic field is prescribed.
Gaussian quadrature 1s used to perform surface integral.

The value = along the border is used as essential conditions
on the expansion.

In toroidal geometry regularity places further constraints on
.
lim B_/2 > vy,

r—> 0
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A modified Picard scheme 1s used to perform nonlinear
iteration.

E_’H_IZWAL_IG”‘F(I—W)E_”

w 1s a relaxation parameter that provides stabilization to
nonlinear iteration.

Convergence 1n checked by comparing the residual of the
nonlinear solve with the magnitude of

Ay + FF'+ u,R*P’
Ja v |

= error

In practice, Picard scheme 1s adequate.
— Computation takes 1-2 minutes on laptops and workstations.

A Newton iteration can be added to accelerate convergence
near solution.
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The equilibrium E(R,Z), j(R,Z), and p(R,z) are calculated
from =, F(y), and p(y).

RB=RV¢xVy +Fé,
,uoj:F'Vt//xV¢+A*gyV¢

e Chain rule 1s applied to calculate B from the known quantity =

and then fpo ;1s calculated from Epo !

— Nimrod uses RB,,and R'IJ(/, in the representation of equilibrium fields.
= . A 2 : : A
RB, =¢é¢,x(R*?VE+2RE¢,)

g = I

—

luOJpol :_B F,

pol

R'J,=-FF'/u,R* - P
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NIMEQ flowchart shows the steps in the nonlinear iteration.

Read mesh and
magnetic field on
boundary from
input file

A 4

Calculate FF’
and P’ for the
current flux
distribution

Solve algebraic
system for next

value of =

Calculate

right hand
side from FF’

andp’

Generate finite

A 4

Calculate the

element Grad- Check to see if the
Shafranov residual error and number of
operator check for /\ iterations exceeds
convergence > no ™  the maximum
v U allowed value
Perform surface
integration along v v
the boundary to
calculate yes yes
inhomogeneous
contribution
Ma;?ea;r; giﬁal Calculate B,J, p G '
: . . from the | Generate input file
nonlinear iteration converged > for NIMROD
solution.
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Several basic models for F and p have been implemented.

* A normalized ring flux Y has been calculated to distinguish
between physics 1n open and closed flux regions.
— Y=0 on the magnetic axis

— Y=I on separatrix and open flux region
* Three models for F
— F=f open+f1*(1-Y)+4*£2*Y(Y-1)
— F=f opent(f axis-f open)*(1-3Y?*+2Y?)
— F=f0+fly
 Two models for pressure
~ P=P,
— P=P _open +(P_axis-P_open)*(1-3Y>+2Y?)

15



Verification of solver accuracy :Analytic solutions for the
magnetic field in a constant lambda cylindrical pinch are
used to benchmark solver.

* Magnetic fields are functions radius only.
— B,=-ByJ,(\R) B=B,J,(AR) B=0
— Nimrod uses (R,z,p) coordinates instead of (R,0,z) coordinates.
— B, reverses sign at AR=2.404.

« Three different computation grids are used to test different
aspects of the solver.

— Rectangular grid in a toroidal configuration with B specified along the
entire boundary.

— Rectangular grid in a toroidal configuration with periodic boundary
conditions in the z-direction and the flux specified on the outer
boundary.

— Circular grid with periodicity in the z-direction and the flux specified
on the outer boundary.
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Bz (T)

Plots of equilibrium fields generated with a rectangular
mesh show agreement with analytic solutions.

— A=1 exact
= =1 calculated
A=2 exact
= )=2 calculated

— A=2.5 exact

= )=2.5 calculated

R(m)
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Contours of B, for rectangular grids with different boundary
conditions display the surface integrator accuracy.
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Comparison of equilibrium fields on circular grid verifies
the solver in non-toroidal systems.
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Fields for A =1 solutions agree with theoretical values.
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Plots of B_;Qol show that that B 1s small and depends only on .
Nonlinear iterations fail to converge for equilibria with A =2.5

(axial field reversal).

— Additional work 1s being done to improve convergence.
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Axisymmetric nonlinear stimulations of a circular cross-
section tokamak test quality of equilibrium with finite
pressure.

Initial pressure Final pressure
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e Generated equilibrium 1s used as 1nitial condition tor nonlinear
simulation.
— Major Radius =2 Minor radius =1
— Cubic pressure profile with 5~0.3
— 18x18 circular grid with 5% order polynomials

* Simulation ran for 7500 t,.
* A change in peak pressure of 0.046% is observed.
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An equilibrium for SSPX 1s generated on a grid that

represents its flux conserver.

Quadratic model for F'is
used with RB,,;,; on the

magnetic axis set to 0.17
Tm.

Cubic model for pressure

with u,P on axis setto 0.1. o
~ B=2/3

7, = 1.88x107s o

20x28 mesh with 4% order
polynomial elements

Equilibrium was designed 03}
with no open flux surfaces :
to aid simulations of A

0.2

7.1

Pl

-0.00827477
001654585
00248243
-0.0320089
-0.0413738
-0.0485 426
-0.0579234
-0.0661982
-0.0744729
00827 47T
-0.0910225
-0.09892 072
007572
-0.115847
VR E R by

nonlinear evolution.

0.6

21




Axisymmetric nonlinear simulations of SSPX equilibrium
test the quality of equilibrium.

Initial pressure Final pressure
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Simulation 1s run for ~100 t,
Peak pressure changed by ~ 0.16%

An isotropic number density diffusivity of 100 m?/s is used for
numerical stability.
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Conclusions & Future Work

A Grad-Shafranov solver has been developed for the
NIMROD code.

Fields created for a constant lambda cylindrical pinch show
good agreement with analytical solution.

Nonlinear simulations of equilibria ran over numerous Alfvén
times suggest that the plasma is in equilibrium.

Addition benchmarking 1s being performed.

Functionality to create grid and generate initial magnetic field
along the boundary will be created within NIMEQ.

Use equilibria from NIMEQ to study SSPX and other
configurations.
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