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Abstract

• A Grad-Shafranov equilibrium solver is developed 
within the NIMROD framework to create plasma 
profiles for realistic geometry. The traditional Grad-
Shafranov operator is converted to a pure divergence 
allowing the use of standard regularity conditions for 
the quantity ψ/R2 in simply connected domains. The 
resulting equation is solved in the weak form using a 
finite element representation. A Picard scheme is 
used to advance the nonlinear iteration. 
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Outline

• Introduction
• Outline of solver

– Derivation of finite element Grad-Shafranov operator
– Inhomogeneous boundary conditions
– Nonlinear iteration
– Calculation of equilibrium fields
– NIMROD Implementation

• Verification of solver accuracy
– Constant lambda cylindrical pinch
– Circular cross section tokamak 
– SSPX geometry

• Conclusions & future work
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INTRODUCTION: The NIMROD code is a computational 
laboratory designed to study 3D plasmas for fusion based 

applications [Phys. Plasmas 10 (2003) 1727].

• NIMROD uses a spectral element expansion in 2 dimensions 
and finite Fourier series in the third.
– Spectral element expansion provides NIMROD with the flexibility to 

study plasma in complex geometries.
• High-order accuracy resolves extreme anisotropy.

– Fourier expansion in third dimension requires a degree of symmetry.
• Linear periodic or toroidal geometry

• Nimrod uses an implicit leap frog time advance [JoP: Conf. 
Ser. 16, 25 (2005)].
– Allows timesteps that are large relative to normal-mode propagation 

times. 
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• The capability to create simple 1D equilibria exists within 
NIMROD’s preprocessor . 

• For more complex geometries, an equilibrium is created from 
an external source and then interpolated to a NIMROD mesh.
– The process of interpolation introduces numerical errors into the 

equilibrium.
– Software designed to reconstruct equilibria from experimental 

measurements may sacrifice accuracy for speed.
– The propagation of these errors though the simulation increases as the 

disparity of spatial and temporal scales in the physics increase.
• NIMROD simulations use equilibria as initial states or as fixed 

data, where the code just evolves perturbations.

NIMROD computations use Grad-Shafranov equilibria in 
many applications.
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Simulations used to study linear instabilities in SSPX 
discharges illustrate the practicality of a native equilibrium 

solver.

• Cylindrical pinch
– SSPX profiles have been approximated with linear cylindrical pinches.
– Analytic solutions can be used to generate equilibrium.
– Simplifications result in loss of geometric effects.

• Realistic mesh representing entire flux conserver
– Geometric effects from gun and wall are included.
– Initial conditions can be read from reconstructed equilibria.
– A native solve can be used to scan profiles in this realistic geometry.
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Creating an equilibrium solver within NIMROD allows the 
full use of spectral element flexibility and accuracy.  

• Using the same expansion to create equilibria and run MHD 
simulations eliminates all interpolation errors.
– Best possible equilibrium for a particular grid.

• NIMROD users will be able to modify the solver to meet 
demands of specific applications.
– Magnetosphere plasma profiles
– Parameterized tokamaks, RFPs, and spheromaks
– Refine equilibria from other codes

• Modularity of NIMROD provides most of the computational 
tools needed for the equilibrium solver.
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Outline of solver: The Grad-Shafranov equation describes 2 
dimensional axisymmetric plasma equilibria with no flow.

• Nonlinear, elliptic, partial differential equation for the flux 
function ψ(R,z)
– F and p are independent functions of ψ and need to be specified.
– F =RBφ p=pressure

• In a linear geometry (φ=>z), the del star operator reduces to 
the Laplacian in  (x,y).
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The Grad-Shafranov operator can be expressed as a total 
divergence.
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• Expanding ψ shows that Ξ is well behaved near R=0 as long as 
ψ0=0.

• We choose ψ0=0 for the arbitrary constant so that Ξ satisfies 
standard regularity conditions.
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A finite element algebraic equation is formulated for the 
dependent variable Ξ.

( ) ( )

( )

i
j

jij

i
j

j
jiji

jj

ii

gM

termssurfacedVGdV
ZZRR

R

zR

dVGdVzRR

RpFFRGRGR

=Ξ

+−=Ξ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

Ξ=Ξ

=Ξ∇⋅∇

′−′−≡ΞΞ=Ξ∇⋅∇

∑

∫∑∫

∑

∫∫

*

2

2

2
00

2

),(

),()(

,,,)(

α
αααα

α

αα

μμ

Weak form of Grad-
Shafranov equation

Expand dependent variable with 
finite element basis functions

No contribution for Dirchlet 
boundary conditions on Ξ



11

• The change in the flux function along the boundary is given 
by

• Normal magnetic field is prescribed.
• Gaussian quadrature is used to perform surface integral.
• The value Ξ along the border is used as essential conditions 

on the expansion.
• In toroidal geometry regularity places further constraints on 
ψ.

A surface integral is performed to calculate ψ along the 
boundary. 
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A modified Picard scheme is used to perform nonlinear 
iteration.

• w is a relaxation parameter that provides stabilization to 
nonlinear iteration.

• Convergence in checked by comparing the residual of the 
nonlinear solve with the magnitude of 

• In practice, Picard scheme is adequate.
– Computation takes 1-2 minutes on laptops and workstations.

• A Newton iteration can be added to accelerate convergence 
near solution.
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The equilibrium B(R,z), J(R,z), and p(R,z) are calculated 
from Ξ, F(ψ), and p(ψ).

• Chain rule is applied to calculate B from the known quantity Ξ
and then Jpol is calculated from Bpol.
– Nimrod uses RBφ and R-1Jφ in the representation of equilibrium fields.
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Calculate FF’ 
and P’ for the 
current flux 
distribution

NIMEQ flowchart shows the steps in the nonlinear iteration.

Read mesh and 
magnetic field on 

boundary from 
input file

Generate finite 
element Grad-

Shafranov 
operator

Perform surface 
integration along 
the boundary to 

calculate 
inhomogeneous 

contribution

Make an initial 
guess for 

nonlinear iteration
Generate input file 

for NIMROD

Calculate the 
residual error and 

check for 
convergence

Calculate B,J, p
from the 

converged 
solution.

yes

no

Check to see if the 
number of 

iterations exceeds 
the maximum 
allowed value

no

yes

Calculate 
right hand 

side from FF’
and p’

Solve algebraic 
system for next 

value of Ξ
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Several basic models for F and p have been implemented. 
• A normalized ring flux Y has been calculated to distinguish 

between physics in open and closed flux regions.
– Y=0 on the magnetic axis
– Y=1 on separatrix and open flux region

• Three models for F
– F=f_open+f1*(1-Y)+4*f2*Y(Y-1)
– F=f_open+(f_axis-f_open)*(1-3Y2+2Y3)

– F=f0+f1ψ

• Two models for pressure
– P=P0

– P=P_open +(P_axis-P_open)*(1-3Y2+2Y3)
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Verification of solver accuracy :Analytic solutions for the 
magnetic field in a constant lambda cylindrical pinch are 

used to benchmark solver.
• Magnetic fields are functions radius only.

– Bφ=-B0J1(λR)   Bz=B0J0(λR)   Br=0
– Nimrod uses (R,z,φ) coordinates instead of (R,θ,z) coordinates.
– Bz reverses sign at λR=2.404.

• Three different computation grids are used to test different 
aspects of the solver.
– Rectangular grid in a toroidal configuration with B specified along the 

entire boundary.
– Rectangular grid in a toroidal configuration with periodic boundary 

conditions in the z-direction and the flux specified on the outer 
boundary.

– Circular grid with periodicity in the z-direction and the flux specified 
on the outer boundary.
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Plots of equilibrium fields generated with a rectangular 
mesh show agreement with analytic solutions.
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Contours of BR for rectangular grids with different boundary 
conditions display the surface integrator accuracy.   

• Values of B specified on 
boundary

• 16x16 elements with 4th order 
polynomials

• Max BR =1.863x10-10

• B0= 1.0

• Periodic boundary conditions 
in z with ψ specified on outer 
surface

• 16x16 elements with 4th order 
polynomials

• Max BR =1.833x10-12

• B0= 1.0
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Comparison of equilibrium fields on circular grid verifies 
the solver in non-toroidal systems. 

• Fields for λ =1 solutions agree with theoretical values.
• Plots of Bpol show that that BR is small and depends only on ψ.
• Nonlinear iterations fail to converge for equilibria with λ =2.5 

(axial field reversal).
– Additional work is being done to improve convergence. 

Bpol Bz
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Axisymmetric nonlinear simulations of a circular cross-
section tokamak test quality of equilibrium with finite 

pressure.

• Generated equilibrium is used as initial condition for nonlinear 
simulation.
– Major Radius =2 Minor radius =1
– Cubic pressure profile with β~0.3
– 18x18 circular grid with 5th order polynomials

• Simulation ran for 7500 τA.
• A change in peak pressure of 0.046% is observed.

Initial pressure Final pressure
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An equilibrium for SSPX is generated on a grid that 
represents its flux conserver.

• Quadratic model for F is 
used with RBphi on the 
magnetic axis set to 0.17 
Tm.

• Cubic model for pressure 
with u0P on axis set to 0.1.
– β=2/3

• τA = 1.88x10-7s
• 20x28 mesh with 4th order 

polynomial elements
• Equilibrium was designed 

with no open flux surfaces 
to aid simulations of 
nonlinear evolution.
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Axisymmetric nonlinear simulations of SSPX equilibrium 
test the quality of equilibrium.

• Simulation is run for ~100 tA
• Peak pressure changed by ~ 0.16%
• An isotropic number density diffusivity of 100 m2/s is used for 

numerical stability.

Initial pressure Final pressure
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Conclusions & Future Work

• A Grad-Shafranov solver has been developed for the 
NIMROD code.

• Fields created for a constant lambda cylindrical pinch show 
good agreement with analytical solution.

• Nonlinear simulations of equilibria ran over numerous Alfvén 
times suggest that the plasma is in equilibrium. 

• Addition benchmarking is being performed. 
• Functionality to create grid and generate initial magnetic field 

along the boundary will be created within NIMEQ.
• Use equilibria from NIMEQ to study SSPX and other 

configurations.   
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